A characterization of some projective special linear groups
نویسندگان
چکیده
منابع مشابه
Characterization of some projective special linear groups in dimension four by their orders and degree patterns
Let $G$ be a finite group. The degree pattern of $G$ denoted by $D(G)$ is defined as follows: If $pi(G)={p_{1},p_{2},...,p_{k}}$ such that $p_{1}
متن کاملCharacterization of projective special linear groups in dimension three by their orders and degree patterns
The prime graph $Gamma(G)$ of a group $G$ is a graph with vertex set $pi(G)$, the set of primes dividing the order of $G$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $G$ of order $pq$. Let $pi(G)={p_{1},p_{2},...,p_{k}}$. For $pinpi(G)$, set $deg(p):=|{q inpi(G)| psim q}|$, which is called the degree of $p$. We also set $D(G):...
متن کاملcharacterization of some projective special linear groups in dimension four by their orders and degree patterns
let $g$ be a finite group. the degree pattern of $g$ denoted by $d(g)$ is defined as follows: if $pi(g)={p_{1},p_{2},...,p_{k}}$ such that $p_{1}
متن کاملcharacterization of projective general linear groups
let $g$ be a finite group and $pi_{e}(g)$ be the set of element orders of $g $. let $k in pi_{e}(g)$ and $s_{k}$ be the number of elements of order $k $ in $g$. set nse($g$):=${ s_{k} | k in pi_{e}(g)}$. in this paper, it is proved if $|g|=|$ pgl$_{2}(q)|$, where $q$ is odd prime power and nse$(g)= $nse$($pgl$_{2}(q))$, then $g cong $pgl$_
متن کاملNSE characterization of some linear groups
For a finite group $G$, let $nse(G)={m_kmid kinpi_e(G)}$, where $m_k$ is the number of elements of order $k$ in $G$ and $pi_{e}(G)$ is the set of element orders of $G$. In this paper, we prove that $Gcong L_m(2)$ if and only if $pmid |G|$ and $nse(G)=nse(L_m(2))$, where $min {n,n+1}$ and $2^n-1=p$ is a prime number.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1967
ISSN: 0021-8693
DOI: 10.1016/0021-8693(67)90085-3